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ABSTRACT 

 

Rac2 is a small Rho GTPase known to have roles regulating actin cytoskeletal reorganization 

and gene expression in cells of hematopoietic origin. Loss of Rac2 activity in humans and 

mice results in neutrophil function deficits and severe bacterial infections. While rac2 

transcript had been confirmed in whole adult zebrafish preparations, little else was known 

about Rac2 in the zebrafish. This work substantially increases what is known about Rac2 in 

the zebrafish.  

 

It was hypothesized that Rac2 function in zebrafish is similar to that in humans. In order to 

investigate this, a three-pronged approach was taken: 1) a descriptive study of the expression 

of Rac2 protein, using immunocytochemistry, and transcript, using qPCR, in the zebrafish 

neutrophil; 2) in vitro neutrophil function assays and Rac-specific small-molecule inhibition; 

3) morpholino oligonucleotide gene knockdown of rac2 in zebrafish embryos followed by 

exposure to one of two fish pathogens, Aeromonas hydrophila or Edwardsiella ictaluri, and 

assessment of embryo survival. 

 

The presence of Rac2 protein is described for the first time in the adult zebrafish neutrophil. 

It was localized to the cytoplasm, as in human neutrophils. rac2 transcript was found in 

whole embryo preparations by 12 hours post fertilization, earlier than previously described. 

Only rac2, and not rac1 or rac3, was found in adult zebrafish neutrophils. Inhibition of Rac 

caused significant decreases in the key neutrophil functions of respiratory burst, 

phagocytosis, and NETs release. Following exposure to Aeromonas hydrophila, rac2 

morpholino-injected embryos exhibited significant increases in mortality as compared to 

uninjected or control morpholino-injected embryos.  

 

Rac2 clearly plays a role in neutrophil function in the zebrafish. That role is similar to the 

one that Rac2 plays in human and mouse neutrophils.



www.manaraa.com

1 

!

CHAPTER 1. General Introduction 

 

1.1 Introduction 

As Amulic and colleagues so aptly put it their 2012 contribution to the Annual Review of 

Immunology, “Neutrophils were discovered at the dawn of the immunological sciences” by 

Paul Ehrlich. In 1880, he characterized cells that had a “polymorphous nucleus” and the 

tendency to retain neutral dyes, thus their name neutrophils (Amulic et al., 2012). Around the 

same time, Elie Metchnikoff stuck rose thorns into transparent starfish larvae to test his 

hypothesis that the mobile cells he had noticed might serve as host defense elements against 

invaders. Sure enough, after puncturing the skin, the rose thorns became surrounded by those 

mobile cells. Add to that his subsequent observation of Monospora bicuspidata being 

spontaneously ingested and destroyed by mobile blood cells in daphnia and Metchnikoff has 

been credited with developing “the full exposition and understanding of phagocytosis”(Gay, 

1935; Rebuck and Crowley, 1955). So neutrophils have been studied for well over a century.  

 

Despite a relatively long history of investigation, up until recently, neutrophils have been 

viewed as rather one-dimensional cells: short-lived, early-responding phagocytes that migrate 

into the tissues and then die by the time the rest of the immune system really gets involved in 

an immune response. This view has been challenged by evidence that neutrophil cytokine 

and chemokine secretion, as well as direct cell-to-cell contact, shapes the subsequent immune 

response (macrophage, dendritic cell, and T-cells) (for reviews of this shifting outlook, see 

(Amulic et al., 2012; Croker et al., 2012)). Neutrophils have now been shown, first in vitro 

and then in the zebrafish in vivo, to exhibit retrograde chemotaxis away from a site of 

inflammation (Buckley et al., 2006; Mathias et al., 2006). Neutrophils also cross-prime T-

cells in vivo and traffic to lymph nodes (Beauvillain et al., 2007; Yang et al., 2010). Clearly, 

the traditional, simplistic view of the neutrophil has been complicated substantially.  

 

Even though we have made great strides in our understanding of neutrophil biology and 

function over the past 100 years, there is still much that remains unanswered or merely 

inferred. Despite its origins with Elie Metchnikoff’s in vivo observations, the fact remains 
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that most of our knowledge of the immune system comes from examination of in vitro 

systems and histopathological samples, this makes teasing out the cellular dynamics difficult, 

especially in the very early stages of the immune response. The zebrafish, Danio rerio, offers 

some unique advantages as compared to more traditional model systems, such as mouse or 

Caenorhabditis elegans, perhaps the most powerful and notable in this context is the 

combination of high optical clarity through the first seven days of life, swift development, 

and the presence of both innate and adaptive arms of the immune system (Renshaw and 

Trede, 2012). 

 

The zebrafish has already played a part in dissecting the role of the neutrophil in the immune 

response, as demonstrated by observations of retrograde chemotaxis, and the body of work 

from the labs of Drs. Stephen Renshaw, Ann-Marie Meijer, and Anna Huttenlocher. The 

more we discover about immune function in the zebrafish, the more powerful a model system 

it can be; but both its strengths and its weaknesses must be probed. To this end, we decided 

to harness zebrafish genetic tractability and external development to investigate the Rho 

small GTPase, Rac2, in embryos and neutrophils.  

 

The overall hypothesis of the dissertation was: Rac2 function in the neutrophils of zebrafish 

is similar to that in humans.   

 

In order to investigate this hypothesis, four specific aims were developed: 

 

Specific aim 1. Establish that Rac2 protein is present in adult zebrafish neutrophils and 

determine its expression pattern. Immunocytochemical staining was performed on zebrafish 

kidney marrow cells. 

 

Specific aim 2. Describe expression of rac2 in zebrafish embryos over time and in adult 

neutrophils, relative to the other two isoforms of Rac. Analysis of target gene expression was 

assessed via qPCR using whole embryos and adult neutrophil preparations. 
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Subhypothesis 1. Inhibition of Rac2 function will cause defects in neutrophil oxidative burst, 

NET release, and phagocytosis functions. 

 

Specific aim 3. Quantify oxidative burst, NET release, and phagocytosis of opsonized 

bacteria in adult zebrafish neutrophils under Rac2 inhibitory conditions using NSC23766, a 

Rac-specific small molecule inhibitor. Neutrophil function was assessed using well-

established neutrophil functional assays (Chuammitri et al., 2011; Jovanovi" et al., 2011; 

Pali" et al., 2007). 

 

Subhypothesis 2. Inhibition of Rac2 function will cause increased mortality of embryos 

exposed to bacterial infection. 

 

Specific aim 4. Quantify mortality of embryos exposed to Aeromonas hydrophila or 

Edwardsiella ictaluri via the immersion route following Rac2-knockdown. Embryos were 

exposed to one of these species of bacteria at 48 hours post fertilization following Rac2-

specific morpholino oligonucleotide knock-down. 

 

1.2 Dissertation organization 

This dissertation is organized in the alternative format, including a literature review and three 

manuscripts that have been modified from manuscripts submitted for publication or that we 

plan to submit for publication in the near future. Chapters 3 and 4 are modified from a single 

manuscript accepted for publication: 

Tell, RM, Kimura, K, Pali", D. Rac2 expression and its role in neutrophil functions of 

zebrafish (Danio rerio). Accepted for publication by Fish and Shellfish 

Immunology. 

Chapter 5 is prepared as a short communication for submission in the near future. 
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CHAPTER 2. Literature Review 
 

“Without the immune system, our body is nothing but an incubator for infectious diseases.” –

Dr. Michael Cho, Seminar, April 20, 2011.  

 

The immune system is a network of barriers, cells, and effector molecules that serves largely 

to protect animal hosts from external threats to their health. It acts as a warning system in 

cases of injury and infection. In order to do this, components of the immune system must be 

sensitive, so as to catch threats early, and specific, so as not to regularly react to host 

molecules leading to pathology. The specificity of the immune response increases over time, 

both during a single response to a pathogen and over the course of the lifetime of the host. In 

addition to warning of injury and infection, the immune system provides protection from and 

clearance of infectious agents. The components of the immune system are traditionally 

divided into two categories, innate and adaptive, though this division is somewhat arbitrary, 

as their actions are complexly intertwined. 

 

The innate portions of the immune system are generally described as being present at 

birth/hatching, providing protection against broad categories of pathogens, and developing no 

“memory” of pathogens that have been previously seen in the host’s lifetime. While often not 

thought of as part of the immune system, intact skin and mucous membranes provide stern 

barriers to entry. These barriers are also associated with chemical means of defense against 

pathogens, some of which, such as lysozyme and antimicrobial peptides (AMPs), have direct 

microbicidal and cytolytic actions, as does the complement cascade. Many of these 

antimicrobial peptides and complement components act as chemical messengers to modulate 

the immune response by recruiting immune cells to the site of infection, enhancing 

phagocytosis, and other immune actions (Jenssen et al., 2006; Mandell et al., 2010). These 

innate immune peptides and proteins are able to essentially distinguish between the 

eukaryotic host cells and potential invaders by recognizing membrane differences in 

molecular composition and electrostatic charge (Mandell et al., 2010; Pasupuleti et al., 2012). 

Recognition of pathogen-associated molecular patterns (PAMPs) is a hallmark of what we 
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consider to be the innate portion of the immune system.  These PAMPs are widely conserved 

amongst diverse pathogens. Cells involved in the innate immune response detect these 

PAMPs using pattern recognition receptors (PRRs), such as transmembrane Toll-like 

receptors (TLRs), cytosolic nucleotide-binding domain, leucine-rich repeat containing 

proteins (NLRs), and Dectin-1 (Kofoed and Vance, 2012). Expression of PRRs is not limited 

to immune cells, most notably, they are also present on various epithelial and endothelial 

cells (Grote et al., 2010; Marques and Boneca, 2011; Parker et al., 2007). Cells traditionally 

thought of as innate immune cells include: natural killer cells, neutrophils, macrophages, and 

dendritic cells. This last is often called a “bridge” between innate and adaptive immunity due 

to its role in antigen presentation. 

 

The adaptive immune system is comprised of protections against specific pathogens which 

develop over the course of an animal’s lifetime and generate immunological memory of 

pathogens seen in the past, which allows for swifter more effective immune responses to 

those pathogens in the future. Adaptive immune cells include B and T lymphocytes. These 

cells recognize small parts of the molecular structure of antigenic molecules, known as 

epitopes. Each B or T cell recognizes only a single epitope of a single antigen, resulting in 

the exquisite specificity of the adaptive immune response. This specificity, as well as the 

great diversity of B and T cell receptors, is achieved by a combination of gene segment 

recombination, diversification of the sequence at the segment junctions, and point mutations 

throughout the gene. Upon recognition of its cognate antigen, a B or T cell will begin to 

replicate, resulting in a large number of that antigen-specific lymphocyte. B cells go on to 

produce a soluble form of their receptor, the well-known antibodies (Murphy et al., 2008). 

These antibodies bind to pathogens and soluble antigens, helping effector cells, such as 

neutrophils and macrophages, to better recognize, phagocytose, and destroy these invaders 

(Mandell et al., 2010). 
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The neutrophil is a professional phagocyte of the immune system and is the first line of 

recruited cellular defense upon infection or injury of the host animal. Neutrophils migrate 

from the bloodstream to the affected area via chemotaxis quickly and in large numbers 

(Colucci-Guyon et al., 2011; Deng et al., 2012; Rebuck and Crowley, 1955; Renshaw et al., 

2007; Renshaw et al., 2006). Once there, they work to contain and destroy any invaders. This 

is initially done via phagocytosis and killing.  

 

Phagocytosis a hallmark function of the neutrophil. It is an active process which requires 

cytoskeletal rearrangement. An intruder is recognized via PRRs or Fc#Rs and subsequently 

internalized. Neutrophils are very efficient at this, internalizing an IgG-opsonized target in 

less than 20 seconds (Segal et al., 1980). For comparison, macrophages generally take 

several minutes to ingest similar types and amounts of targets (Henry et al., 2004). The 

granules that give neutrophils their name, are then called into action. Within 20 seconds after 

the formation of the phagosome, neutrophil granules of the azurophil and specific types have 

fused with this transient organelle, releasing their potent antimicrobial and proteolytic 

contents into that enclosed space, degranulating (Segal et al., 1980). The early stages of this 

phagosome-granule fusion are calcium-dependent, while fusion of primary granules with 

later-stage phagosomes proceed in a calcium-independent fashion (Nordenfelt et al., 2009). 

 

Neutrophil granules are traditionally subdivided into two classes based on the presence or 

absence of myeloperoxidase (MPO): peroxidase-positive (also called primary or azurophilic) 

and peroxidase-negative granules. Further common subdivision of the peroxidase-negative 

granules is into specific (secondary) and gelatinase (tertiary) granules. This subdivision is 

based on density and a selection of marker proteins, which seem to be determined by when 

the granules were formed during the development of the neutrophil in which they reside 

(Borregaard et al., 2007). Additionally, the neutrophil contains secretory vesicles which may 

be of endocytic origin (Borregaard et al., 1992). Azurophilic granules are rich in 

antimicrobial proteins, such as MPO, defensins, and lysozyme, as well as proteases such as 

elastase and cathepsin G. Specific granules are rich in the antimicrobial proteins lactoferrin, 

pentraxin 3, and lysozyme, as well as containing proteases such as collagenase and some 
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gelatinase (though not as much as is found in gelatinase granules). Gelatinase granules are 

so-called because of their high content of the protease gelatinase, they also contain the 

antimicrobial protein lysozyme. Secretory vesicle release is important for firm adhesion of 

neutrophils during extravasation because of the $2 integrins that they carry on their 

membranes (Faurschou and Borregaard, 2003; Häger et al., 2010; Sengeløv et al., 1993). 

Specific and gelatinase granules also carry $2 integrins on their membranes, in addition, they 

carry 90% of the cytochrome b in a neutrophil (Borregaard et al., 1983). Cytochrome b is the 

portion of the NADPH oxidase that is membrane-bound when the neutrophil is inactive. 

 

Another quintessential neutrophil function is the respiratory burst. The kinetics of oxygen 

consumption, used to measure respiratory burst function, in neutrophils are very similar to 

those for phagocytosis and degranulation. Within 10 seconds, oxygen consumption 

commences and reaches a linear asymptote 10 seconds after that (under the same conditions 

as those described to measure phagocytosis and degranulation, two paragraphs above) (Segal 

et al., 1980). The phagocyte NADPH oxidase is a multi-component electron-transfer 

complex. The catalytic, electron-transfer portion of the NADPH oxidase is a membrane-

bound flavohemoprotein cytochrome b558 and is a heterodimer made up of two subunits, 

p22phox and gp91phox (also known as NOX2)(Bylund et al., 2010). The rest of the NADPH 

oxidase complex resides in the cytoplasm until cellular activation, when the remaining 

components translocate to the granular membrane and associate with the cytochrome b to 

form a fully functional NADPH oxidase. These three subunits are found in a complex in the 

cytosol, p47phox, p67phox, and p40phox. Additionally, Rac2, a cytosolic Rho small GTPase, 

translocates to the membrane simultaneously, but independently of the three-subunit complex 

(Diebold and Bokoch, 2005). The reactive oxygen species (ROS) that result from assembly 

and activation of the NADPH oxidase have traditionally been thought of as directly 

microbicidal (Babior, 1999). While it is likely that at least HOCl does have direct 

microbicidal action, it has become clear that the ROS also act to liberate phagosomal 

proteases and have a role in cellular signaling (Roos et al., 2003; Roos and Winterbourn, 

2002; Segal, 2005). One of these roles is in the deployment of neutrophil extracellular traps.  
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Neutrophil extracellular traps (NETs) are fibrous structures of decondensed chromatin 

decorated with histones as well as antimicrobial granule and cytoplasmic proteins 

(Brinkmann, 2004; Urban et al., 2009). NETs are released during what seems to be a 

specialized type of caspase-independent cell death (Fuchs et al., 2007). Their release is 

thought to be ROS-dependent, with MPO-derived ROS, such as singlet oxygen, gaining 

specific attention (Kirchner et al., 2012). There have been two published reports of ROS-

independent NET release to date: the first by Marcos et al.(Marcos et al., 2010) was 

retracted; the second, by Gabriel et al.(Gabriel et al., 2010) indicates that in the case of 

Leishmania donovani, human neutrophils produce NETs even in the presence of catalase or 

the NADPH-oxidase inhibitor DPI. It is generally accepted that NETs entrap and kill various 

bacterial, fungal, and protozoal pathogens (Behrendt et al., 2010; Brinkmann, 2004; Ermert 

et al., 2009; Fuchs et al., 2007; Gabriel et al., 2010; Papayannopoulos and Zychlinsky, 2009; 

Remijsen et al., 2011). NETs can serve to slow, immobilize, and inhibit the growth of various 

pathogens, as well as allowing for local concentrations of antimicrobial substances to remain 

high enough to continue their actions while limiting the consequences to surrounding host 

tissue (Mccormick et al., 2010). NET release is phylogenetically conserved in gnathostomes 

(Chuammitri et al., 2009; Pali" et al., 2007b). 

 

Studying a system that is deficient in a component-of-interest is one way to learn the 

importance of that component and its function in the whole. Humans with genetic defects in 

their neutrophils have been instrumental to unlocking polymorphonuclear mysteries (Häger 

et al., 2010). The first severe congenital neutrophil function disorder to be recognized was 

chronic granulomatous disease (CGD, originally known as fatal granulomatous disease of 

childhood)(Windhorst et al., 1968). CGD patients have a genetic defect in one of the five 

subunits of the NADPH oxidase complex. The majority of cases, about two thirds, are caused 

by mutations in the gp91phox gene (CYBB), which results in an X-linked recessive form of the 

disease (van den Berg et al., 2009). These patients suffer from recurrent fungal and catalase-

positive bacterial infectious as well as granulomatous inflammation that often involves 

multiple organs (Kuijpers and Lutter, 2012). CGD patients and the animal models of this 
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disease that have been developed, have taught us a great deal about neutrophil function, in 

general, and the NADPH-oxidase, specifically (Häger et al., 2010). 

 

Small GTPases hydrolyze GTP to GDP. Their endogenous GTPase activity is augmented and 

regulated by GTPase activating proteins (GAPs) and guanine nucleotide exchange factors 

(GEFs). GAPs enhance the intrinsic GTPase activity of the small GTPases and GEFs 

catalyze the exchange of GDP for GTP in the binding groove (Gasper et al., 2009). The Ras 

(rat sarcoma) superfamily of small GTPases contains numerous subfamilies, one of these is 

the Rho (Ras homologs) family.  

 

Rho GTPases participate in and regulate actin cytoskeletal rearrangement and gene 

expression in many different types of cells (Hall, 1998; Van Aelst and D'Souza-Schorey, 

1997). Rho small GTPases have an additional type of regulatory molecule, guanine 

nucleotide exchange inhibitors (RhoGDIs). RhoGDIs inhibit nucleotide dissociation from 

Rho GTPases, inhibiting GAP activity and preventing GEF-mediated nucleotide exchange, 

which essentially lock Rho molecules into their inactive, GDP-bound states. Most inactive 

Rho GTPase molecules are bound to RhoGDIs, which accounts for their localization in the 

cytosol (Garcia-Mata et al., 2011). 

 

The Rac (Ras-related C3 botulinum toxin substrate) subfamily of Rho GTPases consists of 

four members in humans: RAC1, RAC2, RAC3, and RHOG (Wennerberg and Der, 2004). 

The three isoforms of Rac are %89% homologous with one another at the amino acid level. 

There is some functional overlap between the three, but their expression patterns are 

different. While Rac1 is ubiquitously expressed and Rac3 expressed widely, Rac2 is found 

only in cells of hematopoietic origin. (Didsbury et al., 1989; Haataja et al., 1997; Williams et 

al., 2000). As a family, Rac GTPases regulate events downstream of membrane receptor 

activation, which includes regulation of actin cytoskeleton rearrangement , chemotaxis, gene 

transcription, and cell growth (Fenteany and Glogauer, 2004). 
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Rac2 has been shown to be involved in many important functions in cells of hematopoietic 

origin. In hematopoietic stem cells, Rac2 controls localization and retention in hematopoietic 

tissues (Cancelas et al., 2005; Deng et al., 2011; Gu et al., 2003). In B cells, Rac2 regulates 

adhesion and immunological synapse formation (Arana et al., 2008). In T cells, Rac2 plays a 

redundant (with Rac1) but critical role in T lymphopoiesis, as well as being essential to 

certain TCR signals and proper migration to and within secondary lymphoid organs (Faroudi 

et al., 2010; Guo et al., 2008). In mast cells, Rac2 regulates protease expression (Gu et al., 

2002). In DCs, it is involved in phagosomal alkalinization and antigen cross-presentation 

(Savina et al., 2009).  Of course, Rac2 is also involved in many key functions of the 

neutrophil. 

 

Rac2 is the star of another human primary immunodeficiency that has precipitated much 

study and discovery about how neutrophils work. A rare dominant negative mutation in 

Rac2, D57N, causes this immunodeficiency, which manifests as severe recurrent bacterial 

infections and delayed wound healing. Although a baseline neutrophilia is seen, many 

essential neutrophil functions are absent or drastically reduced including chemotaxis, 

respiratory burst, and secretion of granular proteins. Rac2-/- mice reiterate those defects as 

well as exhibiting increased mortality in response to Aspergillus fungal infections (Abdel-

Latif et al., 2004; Ambruso et al., 2000; Roberts et al., 1999; Williams et al., 2000). Rac2 is a 

key regulator of free barbed end formation during actin skeletal reorganization, which is 

necessary for neutrophil migration, chemotaxis, and phagocytosis (Sun et al., 2007). In its 

active, GTP-bound, form Rac2 goes on to interact with effector molecules downstream that 

are involved in actin cytoskeletal rearrangement and the assembly and function of the 

NADPH oxidase, all of which is important for proper neutrophil function in response to host 

threat (Diebold and Bokoch, 2005; Gu et al., 2003). 

 

Rac2 is critical for degranulation of primary granules (Abdel-Latif et al., 2004). As 

mentioned earlier in this review, Rac2 is a cofactor required for proper NADPH oxidase 

subunit recruitment, assembly, and function (though Rac1 can fill in for Rac2 sometimes, it 

is not as efficient) (Bokoch and Zhao, 2006). Rac2 has also been found to be a critical 
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component of reactive oxygen and nitrogen species (RONS)-dependent NET formation in 

mice (Lim et al., 2011). Thus, there is evidence to support the importance of Rac2 in most 

major signaling pathways that regulate neutrophil function.  

 

The zebrafish, Danio rerio (Hamilton 1822), is a teleost, or bony fish. A member of the 

family Cyprinidae, along with carp and fathead minnows, this freshwater fish hails originally 

from South and Southeastern Asia. Commonly found in stagnant and standing water, 

including ditches and rice patties, zebrafish have also been found in streams and rivers, 

including the Ganges. They are a warm water species, preferring water temperatures of 28˚C. 

These small fish (~3 cm long as adults), are omnivorous and easily tolerate home fish tank 

and laboratory aquaculture setups (Lawrence, 2007; Spence et al., 2008).  

 

The zebrafish was introduced as a vertebrate model system around 30 years ago by 

developmental biologists, such as George Streisinger, and ever since then has been 

swimming its way into the hearts and minds of scientists in many varied disciplines such as 

genetics, toxicology, and immunology (Lawrence, 2007; van der Sar et al., 2004). It offers 

many advantages to scientists seeking a model organism. In addition to its small size, which 

allows for high density culture in a relatively small laboratory footprint, zebrafish are highly 

fecund, have short generation length (3 to 6 months) and develop quickly. By 24 hours post 

fertilization (hpf), the developing heart tube can be seen beating in the developing embryo. 

Hatching from the chorion occurs during the third day of development (48-72 hpf) (Sprague 

et al., 2006). Because of their external development, all of this can be observed easily with a 

microscope. The high optical clarity of embryos through 7 days post fertilization (dpf) is a 

unique feature amongst vertebrate laboratory model animals. The ability to observe cellular 

dynamics in live embryos combines with the genetic tractability of the zebrafish in transgenic 

reporter lines of zebrafish (Hall et al., 2009; Renshaw et al., 2006; Renshaw and Trede, 

2012). In these fish, cellular dynamics, interactions, and reactions can be observed in real 

time. Add fluorescently tagged bacteria and you have a recipe for decoding much about host 

pathogen interactions in the immune response. 
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The zebrafish has gained much traction as an immunological model over the past decade. As 

a gnathostome, it has both innate and adaptive immune systems with remarkable similarity to 

those in humans and other mammals, but a delay in the development of functional adaptive 

immunity until 4-6 weeks post fertilization allows for study of innate immune function in the 

absence of adaptive immunity (Ellett and Lieschke, 2010). All major immunological cell 

types have been described, including neutrophils, monocytes/macrophages, dendritic cells, 

NK cells, T and B cells (Renshaw and Trede, 2012). When it comes to infecting a developing 

zebrafish embryo, multiple infection routes are available: immersion, which is believed to 

more closely mimic primary infection routes for many natural fish pathogens, or injection 

(IM, IV, or into embryonic spaces such as the hindbrain ventricle), which allows for close 

control of infectious dose and assurance of successful introduction of bacteria into each 

embryo, are commonly used methods (Harriff et al., 2007; Milligan-Myhre et al., 2011; 

Pressley et al., 2005). 

 

As with any model system, there are also potential disadvantages to using the zebrafish as an 

immunological model. The primary hematopoietic organ of the zebrafish (and most other 

fish) is the kidney, more specifically, the anterior or head kidney (Ellett and Lieschke, 2010). 

In contrast to terrestrial animals, fish live in an aquatic environment. This places them in 

constant, intimate contact with that water, and anything in it, including potential pathogens. 

This difference is thought to be part of the evolutionary reasoning behind another set of 

potential drawbacks to the zebrafish as an immunological model organism. Zebrafish (and 

other fish species) are known to be very tolerant to lipopolysaccharide (LPS) exposure 

(Novoa et al., 2009). LPS is a major component of the Gram negative bacterial outer 

membrane and is a commonly used laboratory immune stimulant and inflammation inducer. 

In mammals, TLR4 is the primary PRR for LPS. Zebrafish TLR4, however, does not respond 

to LPS (Sepulcre et al., 2009). Interesting work out of Dr. Carol Kim’s lab at the University 

of Maine showed that the intracellular signaling portion of TLR4, as well as downstream 

signaling pathways, are still intact in zebrafish cells and react as expected, using a chimeric 

TLR4 molecule fusing the intracellular portion of zebrafish TLR4 to the extracellular portion 

of mouse TLR4 (Sullivan et al., 2009). 
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Zebrafish have true neutrophils, polymorphonuclear granulocytes of myelocytic lineage that 

express high levels of mpx, myeloid-specific peroxidase, a homologue of myeloperoxidase 

(Ellett and Lieschke, 2010; Lieschke et al., 2001; Renshaw et al., 2006). These cells have 

been shown to exhibit all major neutrophil functions: migrating actively, exhibiting 

chemotaxis to sites of injury or infection, phagocytosing invading bacteria and particles, 

performing respiratory burst, and releasing NETs (Colucci-Guyon et al., 2011; Deng et al., 

2012; Deng et al., 2011; Lieschke et al., 2001; Pali" et al., 2007a; Renshaw et al., 2007; 

Renshaw et al., 2006). In fact, zebrafish neutrophils have been observed to phagocytose over 

250 bacteria per hour in the tissues! (For comparison, in the same situation, macrophages 

were observed to phagocytose fewer than 150 bacteria per hour (Colucci-Guyon et al., 

2011)). 

 

When the research for this dissertation began, almost nothing had been described about Rac2 

in zebrafish. Salas-Vidal and colleagues had performed a genomic screen showing that 

zebrafish transcripts for rac1, rac2, and rac3 were present in zebrafish (Salas-Vidal et al., 

2005). Additionally, rac2 had been included in a high throughput whole mount in situ 

hybridization project that was submitted directly to ZFIN.org (Thisse and Thisse, 2004). This 

data showed rac2 transcript in a subpopulation of blood cells, the thymus, the pharynx and 

pectoral fins of developing embryos.  

 

Preliminary results from our lab showed the presence of Rac2 protein in zebrafish 

neutrophils (Figure 2.1). In order to explore the potential use of the whole zebrafish kidney 

degranulation and NETs release assay in investigation of the neutrophil activation pathways, 

whole zebrafish kidneys were exposed to a specific inhibitor of small Rho GTPases, 

Clostridium difficile Toxin B (ToxB), and stimulated with calcium ionophore (CaI). After 

pre-treatment of kidneys with ToxB, a significant reduction was observed in degranulation 

(75% of non-inhibited control, p < 0.05) and NETs release (82% of non-inhibited control, p < 

0.1) (Figure 2.2) when compared to non-inhibited kidneys. This functional data demonstrated 

the potential for use of whole zebrafish kidney assays to detect differences in neutrophil 

function from kidneys exposed to specific signaling pathway inhibitors in vitro, showing 
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potential for use in investigation of neutrophil activation pathways. Furthermore, small Rho 

GTPases, and possibly Rac2, appeared to have a role in zebrafish neutrophil degranulation 

and NETs release. 

 

Since embarking upon the research for this dissertation, there has been contribution to the 

field of Rac GTPases in zebrafish out of the lab of Dr. Anna Huttenlocher at the University 

of Wisconsin-Madison. In 2011, they developed a Rac2D57N line of zebrafish that expresses 

the dominant negative human Rac2 that is responsible for the human primary 

immunodeficiency in addition to the native zebrafish Rac2 (Deng et al., 2011). They showed 

that the Rac2D57N line recapitulates the human primary immunodeficiency and exhibits 

higher mortality to Pseudomonas aeruginosa infection, despite normal macrophage response. 

With this line, as well as a gene knockdown approach using a rac2 translation-blocking 

morpholino oligonucleotide, they demonstrated an essential role for Rac2 in the regulation of 

3D motility and the polarization of F-actin dynamics and PI(3)K signaling in vivo. They also 

observed increased mobilization of Rac2-deficient neutrophils from hematopoietic tissue into 

circulation, which implies that mobilization of neutrophils does not require traditionally 

defined cell motility. 
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Figure 2.1. Rac2 is present in myelopoietic zebrafish kidney cells. A: Not all zebrafish 

kidney cells are stained positive for Rac2 (DAPI nuclear staining blue, anti-Rac2 staining 

green). B: Cytoplasmic localization of Rac2 visualized with anti-Rac2 specific antibody 

(green). C: Control slides do not show non-specific immunoreactivity. D: MPO specific 

staining of zebrafish whole kidney cell suspensions (dark red-brown). E: Characteristic 

neutrophil morphology and MPO positive reaction in zebrafish whole kidney cell 

suspensions. F: MPO positive to MPO negative ratio, and anti-Rac2 positive to anti-Rac2 

negative ratio are not significantly different (P > 0.8, Mean ± SEM, n = 3 separate slides, 5 

visual fields each, >200 counted cells; MPO slides from 10 individual fish were analyzed) 
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Figure 2.2. Pre-treatment of whole zebrafish kidneys with Rho GTPase specific inhibitor, 

Clostridium difficile toxin B (ToxB), decreased MPO exocytosis and NETs release. Different 

letters (a-b) represent statistically significant difference (P < 0.1, Mean ± SEM, n = 4) 
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CHAPTER 3. Rac2 expression in the zebrafish (Danio rerio) 
 
Rachel M. Tellab and Du!an Pali"a 
 
Abstract 

Rac2 is a member of the diverse family of Rho small GTPases which play key roles in the 

regulation of many cellular processes. Loss of Rac2 activity results in severe bacterial  

infections and neutrophil function deficits. We describe rac1, 2, and 3 expression over the 

first three days of developments, as well as the presence and localization of Rac2 protein in 

adult zebrafish neutrophils. The mRNA for each Rac isoform was detected in zebrafish 

embryos as early as 12 hours post fertilization. Immunocytochemistry and confocal 

microscopy of adult zebrafish neutrophils confirmed diffuse Rac2 protein within the 

cytoplasm. Only rac2 was found in sorted neutrophil samples. Zebrafish expression of Rac2 

during early embryonic development as well as in adult neutrophils allows for comparative 

studies of innate immune responses in this animal model. 

 

3.1. Introduction 

Molecules of the small Rho GTPase superfamily participate in the regulation of actin 

cytoskeletal rearrangement and gene expression in many different cell types (Hall, 1998; Van 

Aelst and D'Souza-Schorey, 1997). The Rac subfamily of Rho GTPases consists of four 

members: Rac1, Rac2, Rac3, and RhoG (Wennerberg and Der, 2004). The three isoforms of 

Rac have similar sequences and partial overlap in function, but their pattern of expression 

differs: Rac1 is ubiquitously expressed; Rac2 is found only in cells of hematopoietic origin; 

and Rac3 is  widely expressed, but concentrated in neural tissue (Didsbury et al., 1989; 

Haataja et al., 1997; Williams et al., 2000).  

 

Rho GTPases, including Rac2 and the other in the Rac subfamily, act as bi-molecular 

switches: when GDP-bound they are inactive, when GTP-bound they are active. These Rho 
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molecules have some intrinsic GTPase activity, but are aided and regulated by GTPase 

activating proteins (GAPs), guanine nucleotide exchange factors (GEFs), and guanine 

nucleotide exchange inhibitors (RhoGDIs) (Vetter and Wittinghofer, 2001). GAPs enhance 

the intrinsic GTPase activity of Rho small GTPases. GEFs catalyze the exchange of GDP for 

GTP. RhoGDIs inhibit nucleotide dissociation from Rho GTPases, inhibiting GAP activity 

and preventing GEF-mediated nucleotide exchange, essentially locking Rho molecules into 

their inactive, GDP-bound states. The RhoGDI-bound state of most inactive Rho GTPase 

molecules accounts for their cytosolic localization (Garcia-Mata et al., 2011). Once GTP-

bound, active Rac2 interacts with effector molecules downstream that are involved in actin 

cytoskeletal rearrangement and the assembly and function of the NADPH oxidase, all of 

which is important for proper neutrophil function in response to host threat (Diebold and 

Bokoch, 2001; Gu et al., 2003). 

 

The neutrophil represents the first line of recruited cellular defenses during invasion of 

pathogens or loss of tissue integrity. These professional phagocytes are classically described 

as having three important immune functions: chemotaxis, phagocytosis (and subsequent 

oxidative burst) and degranulation resulting in release of potent antimicrobial substances 

(Papayannopoulos and Zychlinsky, 2009; Witko-Sarsat et al., 2000). A fourth function has 

been described relatively recently: the release of neutrophil extracellular traps, or NETs 

(Brinkmann et al., 2004; Witko-Sarsat et al., 2000). More than ten primary 

immunodeficiencies that cause abnormal neutrophil function in humans have been described, 

including multiple leukocyte adhesion deficiencies and chronic granulomatous disease (Geha 

et al., 2007).   

 

Rac2 deficiency is a rare primary immunodeficiency in humans which leads to severe 

recurrent bacterial infections. Though exhibiting a baseline neutrophilia, essential neutrophil 

functions are absent or drastically reduced in these individuals, including chemotaxis, 

oxidative burst, and secretion of granular proteins. Rac2-/- mice reiterate the defects seen in 

humans and also exhibit increased mortality to Aspergillus fungal infections (Abdel-Latif et 

al., 2004; Ambruso et al., 2000; Roberts et al., 1999). Recently, Rac2 was also found to be a 
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critical component of reactive oxygen and nitrogen species (RONS)-dependent NET 

formation in mice (Lim et al., 2011). Therefore, recent studies suggest the involvement of the 

Rac2 molecule in most major signaling pathways that regulate neutrophil function. 

 

The zebrafish (Danio rerio) is a popular laboratory model system that is gaining popularity 

as an immunological model organism (Meeker and Trede, 2008). As a gnathostome, both 

adaptive and innate immune systems are present. Considering its high optical clarity for the 

first several days of development, relatively small size (0.8 mm as an egg to 3cm as adults), 

and genetic tractability, the zebrafish offers many advantages for whole animal 

experimentation. While the genes for Rac1, 2, and 3 have been identified in the zebrafish 

genome, the early (prior to 3 days post fertilization [dpf]) expression during embryonic 

development was not studied (Salas-Vidal et al., 2005). Recently, the transgenic zebrafish 

line, Tg(zMPO:GFP)uw, was used to investigate the role of Rac molecules in embryonic 

zebrafish neutrophil function (Deng et al., 2011), but the presence and distribution of Rac 

subtypes in adult zebrafish neutrophils remains unclear. 

 

We describe Rac1, 2, and 3 gene expression over the first three days of development, as well 

as the presence and localization of the Rac2 protein in adult zebrafish neutrophils for the first 

time. The mRNA for each Rac isoform was detected in zebrafish embryos as early as 12 

hours post fertilization (hpf). We were unable to detect transcript for rac1 or rac3 in isolated 

adult neutrophil suspensions. The zebrafish expresses Rac2 during early embryonic 

development as well as in adult neutrophils, allowing for comparative studies of innate 

immune responses in this animal model. 

 

3.2. Materials and Methods 

Animals 

Zebrafish adults and embryos were bred, raised, and maintained according to standard 

procedures (Westerfield, 2000) and their use was approved by Iowa State University 

Committee of Animal Care. Fish were housed in Aquatic Habitats® recirculation systems 

(Apopka, FL, USA) with 10% daily water exchange using dechlorinated tap water at 25˚C. 
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Whole blood and kidney cell suspensions that were used for cell sorting were collected from 

Tg(mpx:GFP)i113, i114 and casper cross F1 offspring (Renshaw et al., 2006; White et al., 

2008). Embryos used for the timecourse study are the offspring resulting from mating those 

adults (mpx:GFP+;nac+/-roy+/-). The Tg(mpx:GFP)i113, i114 line is a neutrophil-specific reporter 

line (Renshaw et al., 2006). The casper zebrafish line maintains transparency through 

adulthood, resulting from the cross of the nacre (nac) and roy orbison (roy) pigment mutant 

lines (White et al., 2008). 

 

Embryo collection and RNA isolation 

Embryos were collected (time 0) from natural spawnings within 1 hour post fertilization and 

allowed to develop at 28.5˚C in egg water in polysterene petri plates (Westerfield, 2000). At 

subsequent time-points (Figure 3.1), 25 embryos, equally divided between the number of 

plates representing that time point, were collected for each sample. Embryos were transferred 

directly into TRI Reagent (Ambion, Austin, TX, USA). Total RNA extraction was performed 

according to the acid guanidinium thiocyanate-phenol-chloroform extraction protocol 

(Chomczynski and Sacchi, 2006). Each sample of 25 embryos was ground in a 1.5 mL 

centrifuge tube containing 1 mL total volume of Tri-Reagent. RNA concentration was 

determined using a Nanodrop spectrophotometer (NanoDrop Products, Wilmington, DE, 

USA). 

 

Fluorescence activated cell sorting of neutrophils 

Adult zebrafish were euthanized using a solution of tricaine methanesulfonate (MS-222, 

Argent Laboratories, Redmond, WA, USA) buffered to pH of 7.5 with sodium bicarbonate. 

Blood was collected by cardiac puncture using a 1000&L micropipette with the tip coated in 

0.006 units/mL heparin sodium (Sigma, USA) in Phosphate Buffered Saline,  to minimize 

coagulation of the samples. Blood samples were collected from 10 individuals, pooled and 

mixed with 200&L of 0.006units/mL heparin solution. Blood samples were homogenized 

using repeated pipetting in a 200 &L pipette tip. Kidneys from 10 fish were dissected, 

collected in PBS and homogenized in a 1 mL tube using a tissue grinder. After centrifugation 

for 5 minutes at 800 rpm and 4˚C, the supernatant was discarded from each sample and the 
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pellets resuspended in cold PBS (200 &L for kidneys and 400 &L for blood). Each sample 

was pipetted through a 70&m sieve (Fisher Scientific, USA) before sorting. Neutrophils were 

sorted for purity from each sample using a FACSAria III (BD Biosciences, San Jose, CA, 

USA), gated on the green-fluorescence-positive events. Neutrophil samples were 

homogenized in a 1.5 mL tube using a tissue grinder immediately after sorting. RNA 

isolation proceeded as described above (section 2.1). 

 

Reverse transcription PCR and real-time PCR 

Total RNA was obtained as described above. Embryo time-course sample RNA was reverse 

transcribed with Improm-II Reverse Transcriptase and oligo-dT primer (Promega 

Corporation, Madison, WI, USA) using 500 ng of total RNA per reaction. Adult neutrophil 

sample RNA was reverse transcribed with SuperScriptTM III First-Strand Synthesis 

SuperMix (Invitrogen, Carlsbad, CA, USA) using 643.2 ng total RNA per reaction. All 

cDNA was diluted 1:20 with nuclease-free water before proceeding with real-time PCR.  

 

The cDNA was used as a template for real-time PCR with primers (DNA Facility of the Iowa 

State University Office of Biotechnology) designed for selected gene sequences (Table 1). 

When possible, primer sets were designed to span at least one intron. The eukaryotic 

translation elongation factor 1 alpha 1, like 1 (eef1a1l1 [previously known as ef1a]) and 

myeloid-specific peroxidase (mpx) primer set has been previously published and validated 

(Hsu et al., 2004; McCurley and Callard, 2008; Tang et al., 2007). All other primers were 

designed using Primer-BLAST (NCBI) (Rozen and Skaletsky, 2000). 

 

All real-time PCR reactions were created as master mixes, and individual reactions contained 

the following: 10 &L of Power SYBRs Green PCR Mix 2x (Applied Biosystems, Foster City, 

CA, USA), 0.2 mM each of forward and reverse gene specific primers, 2 &L of cDNA, and 

4.4 &L of nuclease-free water. Fluorescence measurements were performed in an ABI 7300 

system (Applied Biosystems) using the following parameters: one cycle at 95˚C for 10 min 

and 45 cycles at 95˚C for 15 sec each followed by 1 min at 60˚C. Fluorescence readings were 

taken at the end of each cycle and negative controls containing water instead of cDNA 
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template were included for each primer set and a positive control sample (72 hpf pooled 

embryo sample) was used for the sorted neutrophil samples. Immediately after cycling, a 

dissociation curve protocol was run consisting of one cycle at 95˚C for 15 sec, 60˚C for 1 

min, and 95˚C for 15 sec. Data was collected by SDS 1.4 software (Applied Biosystems). 

Using exported Rn values, data was analyzed using Real-time PCR Miner Version 3.0 (Zhao 

and Fernald, 2005). R0 values were calculated using the formula:  

R0=1/(1+average efficiency)averageCT. 

 

R0 values were then normalized to our internal control genes, eef1a1l1 and actin, beta 1 

(actb1 [previously known as bactin]). Embryo time-course data was normalized using the 

geometric mean of internal control genes for each sample (Vandesompele et al., 2002). Data 

is presented as fold-change over minimum expression for each gene-of-interest, post 

normalization to internal control genes, over each sample set (Figure 3.1), and as relative 

mRNA concentration (Figures 3.3-3.4). 

 

Immunocytochemistry and confocal microscopy 

Adult zebrafish kidneys were dissected from wild-type fish. Cell suspensions were prepared 

over discontinuous density gradients as described with minor modifications, and used for 

preparation of cytospin slides (Pali" et al., 2005). Immunocytochemistry was performed as 

previously described with minor modifications (Pali" et al., 2007). Cytospin slides were fixed 

using 4% paraformaldehyde, incubated with Image-iT FX signal enhancer (Molecular 

Probes, Eugene, OR, USA), and blocked for 90 minutes in 5% normal donkey serum. Slides 

were incubated with combinations of primary antibodies: rabbit anti-Rac2 (1:100 

concentration) (Santa Cruz Biotechnology, Santa Cruz, CA, USA), goat anti-hMPO (1:100) 

(R&D Systems, Minneapolis, MN, USA) Amplification of signal was achieved by using 

fluorescently tagged secondary antibodies: donkey anti-rabbit Alexa488 (1:150 or 1:200), 

donkey anti-goat Cy3 (1:400), donkey anti-chicken Cy3 (1:200) (Jackson ImmunoResearch 

Laboratories, West Grove, PA, USA). Slides were mounted using ProLong Gold with DAPI 

(Molecular Probes). Cells and associated structures labeled with DAPI and antibodies were 

visualized and images captured using a Leica confocal scanning laser microscope (Leica SP5 



www.manaraa.com

31 

!

X; Leica Microsystems). All photomicrograph figures were prepared using Photoshop 

(version CS5, Adobe).  

 

3.3. Results 

Expression of Rac GTPases in early development 

To determine if there is expression of rac2 in zebrafish embryos prior to occurrence of 

granulocytes, the cDNAs prepared at 12, 18, 24, 36, 48 and 72 hpf were subjected to qPCR. 

Transcripts for rac1, rac2, and rac3 were detected in all samples at all time points (Figure 

3.1). Rac2 is expressed at the earliest time point (12 hpf) in the developing zebrafish embryo. 

Rac2 and rac3 expression showed trends toward increasing over the period of time 

examined, and rac1 expression was either stable or was decreasing after the first day of 

development (Figure 3.1 and data not shown).  

 

 Expression and localization of Rac2 in adult neutrophils 

To determine presence of Rac2 protein in adult zebrafish neutrophils and whether its location 

corresponds to that in mammalian neutrophils, immunocytochemistry was performed using a 

mixed population of unstimulated neutrophils and their precursors isolated from pooled 

kidney samples. The Rac2 antibody used is known to have high specificity for Rac2 and 

negligible cross-reactivity with other Rac isoforms (Gu et al., 2003). Confocal laser scanning 

microscopy of immunofluorescent samples revealed cytoplasmic or endomembrane 

localization of Rac2 in adult zebrafish neutrophils (Figure 3.2). 

 

The presence of Rac2 protein in the adult zebrafish neutrophil prompted the quantification of 

the relative amount of transcript for each rac1, rac2, and rac3 in adult neutrophil populations 

with qPCR. Two different neutrophil populations from adult zebrafish Tg(mpx:GFP)i113, i114 

known to have highly exclusive neutrophil-only expression of GFP were examined: mature 

neutrophils from peripheral blood and a mixed population of neutrophils and their precursors 

from the kidney marrow. Rac2 transcript was detected in all blood and kidney samples 

(Figure 3.3), but we were unable to detect transcript for rac1 or rac3 in any samples that did 
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not also show evidence of macrophage-contamination (mpeg1 expression) (Figures 3.3 and 

3.4) (Ellett et al., 2011). 

 

3.4. Discussion 

In this study, we further characterized the expression of small Rho GTPases rac1, rac2, and 

rac3 in the zebrafish with a focus on the neutrophil. Transcript for rac2 is detected by 12hpf, 

which is earlier than has previously been reported in the zebrafish. We show for the first time 

that Rac2 protein is present in the adult zebrafish neutrophil and quantify relative amounts of 

rac1, rac2, and rac3 transcript in the adult zebrafish neutrophil. Previously published and 

presented data support the choice of the zebrafish as a model system to study innate immune 

function (Martin and Renshaw, 2009; Meeker and Trede, 2008; Tobin et al., 2010). 

 

The overall protein sequence identity of all human and zebrafish Rac family members is 

45.8% and the overall similarity is 98.4%. Based on the BLAST and two phylogenetic 

analysis methods used by Salas-Vidal et al, zebrafish contain two counterparts of rac1 and 

single counterparts of each rac2 and rac3, and these genes have been named rac1a, rac1b, 

rac2, and rac3. Identity positives of Rac2 in particular was predicted to be 93-98% by NCBI 

Conserved Domain Search and SMART (Salas-Vidal et al., 2005). While knockout work in 

mice and study of genetically deficient human cells has shown some functional redundancy, 

there are distinct phenotypes associated with loss of function of Rac1 and Rac2 in 

neutrophils. Loss of Rac2 activity results in those phenotypes noted in the introduction, 

including neutropenia and functional deficits in chemotaxis, degranulation, and oxidative 

burst. Global loss of Rac1 activity is embryonic lethal, while conditional knockout of Rac1 in 

mouse cells of myelocytic lineage results in decreased release of neutrophils and their 

precursors from the bone marrow in response to an experimental peritonitis model as well as 

chemotaxis deficits similar to those seen in Rac2-deficient neutrophils. Reconstitution with 

one isotype does not completely compensate for deletion of the other (Glogauer et al., 2003). 

Some in vitro compensatory up-regulation of expression of Rac1 has been observed in Rac2 

null cells (Gu et al., 2002). Under normal conditions, human and mouse neutrophils have 

been shown to contain both RAC1 and RAC2, though their relative abundance differs 
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between the species (approximately 1:10 to 1:20 and 1:1, respectively, RAC1 to RAC2) 

(Heyworth et al., 1994; Li et al., 2002). 

 

Salasvidal et al. had confirmed expression of all three Rac homologues in whole adult 

zebrafish preparations via RT-PCR but reported expression of only rac1 at 30% epiboly (4 

2/3 hpf) during embryonic development (later developmental stages were not tested) 

(Kimmel et al., 1995).  Neutrophil precursors can be recognized by their expression of 

myeloperoxidase for the first time at 18hpf, when they are seen in the posterior interior cell 

mass. In the hours that follow, neutrophils increase in number and distribution. They are 

widely distributed throughout the embryo at 4 dpf (Bennett et al., 2001). Because neutrophil 

precursors are present by 18 hpf, we suspected that rac2 expression would be detectable by 

that time-point as well. Previous preliminary whole mount in situ hybridization work has 

shown the presence of Rac2 in zebrafish embryos as early as 19-24 hpf. This staining was 

seen in a subpopulation of blood cells (Thisse and Thisse, 2004). We were able to detect rac2 

transcript in pooled whole embryo preparations via qPCR by 12hpf. Indeed, it is quite 

possible that rac2 transcription begins earlier than that, somewhere between 4 ' hpf and 12 

hpf. The amount of rac2 transcript detected was seen to steadily increase over time. This 

increase mirrors the steady increase in number of neutrophils over the first few days of 

development from 60 at 48 hpf to 164 at 96 hpf (Renshaw et al., 2006). 

 

The immunostaining confirmed the presence of Rac2 protein in adult zebrafish neutrophils 

for the first time (Figure 3.2). RAC2 has been previously described as having a 

predominantly cytoplasmic distribution bound to Rho guanine nucleotide dissociation 

inhibitors in resting human cells with some Golgi and endoplasmic reticulum (ER) 

concentration and a shift to an endomembrane and phagosome-heavy distribution upon 

activation (Magalhães and Glogauer, 2010; Michaelson et al., 2001). Our 

immunocytochemistry of adult zebrafish neutrophils demonstrates a Rac2 staining pattern 

that is clearly distinct from either the DAPI of the nucleus or the myeloperoxidase of the 

granules, showing a diffuse inter-granular staining pattern with some concentration in the 

perinuclear region, which may represent the Golgi or the ER. The distribution of Rac2 in the 
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adult zebrafish neutrophil seen in our results mirrors that seen in the human neutrophil and 

other cells (Knaus et al., 1991; Michaelson et al., 2001). 

 

Harnessing the power of the neutrophil-specific transgenic reporter line of Renshaw et al., we 

examined the relative ratios of rac1 to rac2 transcript in adult zebrafish neutrophils. Using 

either our own rac1 and rac2 primer sets or recenty published sets of rac1 and rac2 primers 

(Deng et al., 2011), we were unable to detect rac1 transcript in pooled samples of adult 

zebrafish neutrophils originating either from peripheral blood or from kidney marrow with 

the exception of two kidney samples (Figure 3.4). In these two kidney samples, rac1 

transcript was detected. It is significant to note that these two samples were also the only two 

in which we detected expression of mpeg1, which has been described as a macrophage-

specific gene in the zebrafish, thus indicating possible macrophage contamination of these 

two samples (Ellett et al., 2011). These results indicate that the zebrafish neutrophil is a 

viable alternative to the mouse model to study Rac expression and function, with potential 

advantages because to the ratio of rac1 to rac2 to zebrafish neutrophils is more similar to the 

one observed in human neutrophils. 

 

Our results with regards to relative ratio of rac1 to rac2 transcript do not correspond to a 

recent report by Deng et al. in which they did detect evidence of rac1 transcript in sorted 

neutrophil populations. We believe this discrepancy stems from two differences between 

their study and ours: 1) they examined embryonic neutrophil populations (3 dpf) and we 

examined adult neutrophil populations; and 2) the transgenic reporter lines used were 

different. They used the Tg(zMPO:GFP)uw line and we used the Tg(mpx:GFP)i114 line. Both 

of these lines are transgenic neutrophil reporter lines. However, the Tg(zMPO:GFP)uw line is 

known to express GFP in apparent nonhematopoietic and non-motile cells, including heart 

and tail-fin cells (Mathias et al., 2006), whereas the GFP expression of the Tg(mpx:GFP)i114 

line is known to colocalize with myeloperoxidase with no overlap to L-plastin or neutral red 

staining (both indicative of macrophage cellular identity) and is restricted to motile cells with 

dynamic motility consistent with polymorphonuclear cells (Renshaw et al., 2006). 
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Particularly considering the indication of macrophage contamination in our rac1-positive 

samples and the use of whole embryo preparations by Deng et al, we think that it is possible 

that the rac1 transcript detected by Deng et al. may also indicate contamination of the sample 

with non-neutrophil cell types, including the non-neutrophil GFP+ cells seen in the transgenic 

reporter line that they used. It is also possible that embryonic neutrophils express both rac1 

and rac2, but that rac1 expression decreases and is turned off as the neutrophils and the 

embryos further mature. 

 

In conclusion, the expression of the rac2 was detected as early as 12 hpf in embryonic 

zebrafish. The presence of Rac2 protein was confirmed, and it is suggested that only rac2 is 

present in adult zebrafish neutrophils. Rac2 presents a viable target for further dissecting 

neutrophil roles and functions, as it is present during the life-stages often used for in vivo 

study, including the window during which morpholinooligonucleotide gene knock-down is 

effective. The case for the zebrafish as an innate immunological model is strengthened by 

these findings. 
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Figure 3.1. Expression of Rac GTPases over the first 72hpf. Shown as fold-change over 

minimum expression over observed time-points, no units, normalized to both efa1 and 

bactin. Each time point represents one pooled sample containing 25 embryos from multiple 

clutches. 

 

 
 
Figure 3.2. Immunocytochemistry showing presence and localization of Rac2 in the adult 

zebrafish neutrophil. (A) DAPI staining of nuclear DNA; (B) rabbit anti-Rac2; (C) goat anti- 

hMPO; (D) overlay of all three channels, showing location of Rac2 relative to granules and 

nucleus. Origin of sample, shape of nucleus and presence of MPO-containing granules 

indicates a neutrophil precursor. Laser scanning confocal photomicrographs represent a z-

stack (eight 1.0 mm slices) of one neutrophil that is representative of the other cells in the 

sample. Three color channels are shown.   
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Figure 3.3. Rac2, but not Rac1 or Rac3, transcript is present in sorted adult neutrophil 

samples from kidney marrow and blood. Expression is presented as normalized R0 values to 

ef1a and bactin (y-axis) and are unitless. Error bars represent standard error values (n = 3, 

pooled samples from 10 fish). 
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Figure 3.4. Rac1 transcript was only found in sorted neutrophil samples that exhibited 

evidence of macrophage contamination. (a) rac1 and rac2 in kidney samples with evidence 

of macrophage contamination, K4 and K6 (n = 2); (b) rac2 in kidney samples with no 

evidence of macrophage contamination, including K5 (n = 3); (c) gel electrophoresis of 

qPCR products from three sorted neutrophil samples of adult kidney origin K4 and K6 are 

rac1 and mpeg1 positive, K5 is rac1 and mpeg1 negative. (a,b) Expression is presented as 

normalized R0 values to ef1a and bactin (y-axis) and are unitless. Error bars represent 

standard error values (All samples are pooled samples from 10 fish). 
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CHAPTER 4. The role of Rac2 in neutrophil function of the zebrafish (Danio rerio) 

 

Rachel M. Tellab, Kayoko Kimuracd, and Du#an Pali!a 

 

Abstract 

The neutrophil contributes significantly to the immune response. In particular, their 

phagocytosis and pathogen-killing functions are vital for defense from invading pathogens. 

Rac2, a Rho small GTPase, is involved in many key neutrophil functions. Loss of Rac2 

activity results in severe bacterial infections and neutrophil function deficits in humans and 

mice. While the genes rac1, 2, and 3 have been identified in the zebrafish genome, their 

expression has not been well-characterized. In the previous chapter, the expression pattern of 

these genes was described in an embryo time-course experiment as well as in sorted adult 

neutrophil populations. Armed with knowledge of its presence and exclusive expression in 

zebrafish neutrophils, the role of Rac2 in key antimicrobial zebrafish neutrophil responses 

was examined by small molecule inhibition of Rac during respiratory burst, NET release, and 

phagocytosis assays. Inhibition of Rac2 during these assays produced a dose-dependent 

decrease in each function, as was expected due to previous work in mammals. With this 

knowledge of the expression pattern and role of Rac2 in zebrafish neutrophil function, 

comparative studies of innate immune responses in the zebrafish can be approached from a 

more solid, better-informed perspective. 

 

4.1. Introduction 

Molecules of the small Rho GTPase superfamily participate in the regulation of actin 

cytoskeletal rearrangement and gene expression in many different cell types (Hall, 1998; Van 

Aelst and D'Souza-Schorey, 1997). The Rac subfamily of Rho GTPases is made up of four 

members: Rac1, Rac2, Rac3, and RhoG (Wennerberg and Der, 2004). Three of these, Rac1, 
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2, and 3, have similar sequences and exhibit some functional redundancy but have different 

expression patterns: Rac1 is expressed ubiquitously ; Rac2 can be found only in cells of 

hematopoietic origin; and Rac3 is widely expressed, but found in higher concentrations in 

neural tissue (Didsbury et al., 1989; Haataja et al., 1997; Williams et al., 2000). Rac2, like 

other Rho GTPases, functions as bi-molecular switch, cycling between the GDP-bound 

inactive and GTP-bound active states. In addition to the intrinsic GTPase activity of these 

Rho molecules, this cycling is controlled by GTPase activating proteins (GAPs), which 

enhance their GTPase activity, and guanine nucleotide exchange factors (GEFs), which 

catalyze the exchange of GDP for GTP (Vetter and Wittinghofer, 2001). A third class of 

regulatory molecule guanine nucleotide exchange inhibitors (RhoGDIs) inhibit nucleotide 

dissociation from Rho GTPases, preventing GEF-mediated nucleotide exchange and 

inhibiting GAP activity. RhoGDIs are also responsible for the cytosolic location of the 

majority of inactive Rho GTPase molecules (Garcia-Mata et al., 2011). Active, GTP-bound, 

Rac2 goes on to interact with effector molecules downstream, resulting in actin cytoskeletal 

rearrangement necessary for chemotaxis and phagocytosis, full assembly of the NADPH 

oxidase, and the electron transfers necessary for respiratory burst function (Diebold and 

Bokoch, 2001; Gu et al., 2003). 

 

Neutrophils are the first line of recruited cellular defense in cases of invasion of pathogens or 

wounding. These professional phagocytes have many important immune functions, 

including: chemotaxis, phagocytosis, and bacterial killing via the potent antimicrobial 

substances in their intracellular granules and NADPH oxidase production of reactive oxygen 

species (Papayannopoulos and Zychlinsky, 2009; Witko-Sarsat et al., 2000). Recently, the 

release of neutrophil extracellular traps (NETs), has been described as a granulocyte-specific 

defense mechanism, that appears to be conserved across phylogenetically different animals 

(Brinkmann et al., 2004; Chuammitri et al., 2009; Pali! et al., 2007b). Impairment of 

neutrophil function has been known to cause serious breach of organismal defenses against 

infectious disease and subsequent death in human beings and animals (Nathan, 2006; 

Newburger, 2006). 
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More than ten primary immunodeficiencies that cause abnormal neutrophil function in 

humans have been described, including multiple leukocyte adhesion deficiencies, affecting 

chemotaxis, and chronic granulomatous disease, affecting respiratory burst and NET 

production (Geha et al., 2007). Rac2 deficiency is a rare primary immunodeficiency in 

humans ,which leads to severe recurrent bacterial infections. While a baseline neutrophilia is 

observed in affected individuals, many essential neutrophil functions are absent or drastically 

reduced including chemotaxis, respiratory burst, and secretion of granular proteins. Rac2-/- 

mice reiterate those defects as well as exhibiting increased mortality in response to 

Aspergillus fungal infections (Abdel-Latif et al., 2004; Ambruso et al., 2000; Roberts et al., 

1999). Rac2 was also found to be a critical component of reactive oxygen and nitrogen 

species (RONS)-dependent NET formation in mice (Lim et al., 2011). Therefore, recent 

studies suggest the involvement of the Rac2 molecule in most major signaling pathways that 

regulate neutrophil function. The development of a Rac-specific small molecule inhibitor, 

NSC23766, that inhibits Rac activation by blocking GEF binding to all Rac isoforms (Gao et 

al., 2004) now allows for study of the role of Rac in otherwise normal cells. 

 

The zebrafish (Danio rerio) is a popular laboratory model system that is increasingly used to 

investigate immunological questions (Meeker and Trede, 2008). As a vertebrate animal, 

possessing both an adaptive and innate immune system, with high optical clarity for the first 

several days of development and relatively small size (0.8 mm as an egg to 3 cm as adults), 

the zebrafish offers many advantages for whole animal experimentation. The work presented 

in the previous chapter described the exclusive presence of Rac2 in sorted adult neutrophils 

as well as antibody staining for the protein in adult neutrophils. Recently, the transgenic 

zebrafish line, Tg(zMPO:GFP)uw, was used to investigate the role of Rac molecules in 

embryonic zebrafish neutrophil function (Deng et al., 2011). Deng et al. found Rac2 to be 

important in three-dimensional motility and polarization of embryonic zebrafish neutrophils, 

as well as CXCR4-mediated neutrophil retention in hematopoietic tissues.  However, Rac2 

involvement in neutrophil function in early embryonic development prior to 3 dpf, as well as 

in adult zebrafish neutrophils remains unclear. 
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In order to better understand the roles of Rac2 in the zebrafish neutrophil, key neutrophil 

functions of respiratory burst, NET release, and phagocytosis were examined in the presence 

of a small-molecule inhibitor of Rac, NSC23766. In this study, we show that Rac2 plays an 

important role in neutrophil function in the adult zebrafish. 

 

4.2. Materials and Methods 

Animals 

Zebrafish adults and embryos were bred, raised, and maintained according to standard 

procedures (Westerfield, 2000) and their use was approved by Iowa State University Animal 

Care and Use Committee. Fish were housed in Aquatic Habitats® recirculation systems 

(Apopka, FL, USA) with 10% daily water exchange using dechlorinated tap water at 25˚C. 

Kidney cell suspensions for respiratory burst and NETs assays were collected from wild-type 

adult zebrafish. Kidney cell suspensions for phagocytosis assays were collected from 

Tg(mpx:GFP)i113, i114 and casper cross F1 offspring (Renshaw et al., 2006; White et al., 

2008). 

 

In vitro neutrophil function assays 

Adult zebrafish (wild-type for respiratory burst and NET assays; Tg(mpx:GFP)i114 for 

phagocytosis) were euthanized, kidneys from four fish were pooled as a single sample, and 

cell suspensions were prepared as described (Pali! et al., 2005) with modifications. Dissected 

kidney tissue was homogenized in a tissue grinder, cell suspension passed through 70 $m 

sieves (Fisher Scientific) after homogenization, washed in HBSS without Ca and Mg, and 

cells were counted with a Coulter Particle Counter Z1 (Beckman Coulter Inc, Hialeah, 

Florida, USA).  Cell suspensions were adjusted to between 3.2 % 106 cells/ mL and 5 x 107 

cells/ mL and used in neutrophil function assays. A total of 8 to 16 pooled samples were used 

per assay, four samples per day. Duplicate wells were used in each assay treatment. Cells 

were exposed to standard stimulants (phorbol myristate acetate, PMA, 1 mg/ mL; Sigma–

Aldrich Corp.), a combination of NSC23766 (Tocris Biosciences, Minneapolis, MN, USA) 

25, 125, 250, or 500 $M and standard stimulants at listed concentrations, or to HBSS with Ca 

and Mg, without phenol red (HBSS) (negative control). For respiratory burst assay, cell 
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suspensions were preincubated with the small-molecule inhibitor for 30 minutes before 

stimulation. In the NET and phagocytosis assay, cells were simultaneously exposed to 

stimulant and small molecule inhibitor. 

 

Respiratory burst assays were performed according to established protocols (Hermann et al., 

2004; Jovanovi! et al., 2011) with modification, using 5-(and-6)-carboxy-2´,7´-

dichlorodihydrofluoresceindiacetate (carboxy-H2DCFDA) for improved photostability 

according to the manufacturer (Invitrogen) when compared to chlorinated fluorescein 

derivatives.  

 

Phagocytosis of red fluorescent Aeromonas hydrophila by green fluorescent neutrophils from 

kidneys of Tg(mpx:GFP)i114 zebrafish was determined by flow cytometric detection as 

previously described (Chuammitri et al., 2011) with modifications. Fluorescent A. hydrophila 

was prepared by growing the bacteria overnight at 37˚C in 2 mg/ mL Rhodamine B (Sigma-

Aldrich Corp.) in tryptic soy broth (TSB). Bacteria were then washed in PBS by pelleting at 

2000 g for 5 min at 4˚C and resuspended in PBS; this procedure was performed three times. 

Bacteria were heat-killed at 60˚C for 30 min and washed in PBS. The final pellet was 

suspended in TSB, aliquoted into 1 mL vials, and kept at 4˚C in the dark until used. Bacterial 

viability was checked after heat killing by plating on blood agar and overnight incubation at 

37˚C.  Fluorescence of bacteria was checked via fluorescent microscopy and flow cytometry. 

Final concentration of bacterial suspension was determined by flow cytometry. For the 

phagocytosis assay, labeled A. hydrophila were opsonized in 5% carp (Cyprinis carpio) 

serum in HBSS. Adult zebrafish kidney cell suspensions (25 $L, 6.25 x 104 cells) and 

labeled, opsonized A. hydrophila (25 $L, 1.25 x 106 bacteria) were added to the wells of a 96 

well plate and supplemented with 100 $L of 3% fetal bovine serum in HBSS, with or without 

small molecule inhibitor. Control wells were prepared without labeled bacteria. Plates were 

centrifuged at 600 g, 2 min, 4˚C and incubated at room temperature (~ 20˚C) for 2 hours. 

After incubation, plates were washed and centrifuged at 430 g, 1 min, 4˚C, supernatant was 

discarded, and cell pellets were resuspended with 1% paraformaldehyde (Polysciences, 

Warrington, PA) in PBS. Data were acquired by a BD Biosciences FACSAria III (San Jose, 
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CA). Flow cytometry data were analyzed with FlowJo version 9.4.11 software (TreeStar, 

Ashland, OR, USA). The neutrophil extracellular trap release assay was performed as 

described (Pali! et al., 2007a; Pali! et al., 2007b) with modifications as per (Chuammitri et 

al., 2009) and optimal temperature for fish cells (20˚C).  

 

The NET and respiratory burst-stimulation index were calculated using the following 

formula: Stimulation Index = PMA and NSC23766-exposed neutrophil fluorescence ÷ HBSS 

exposed neutrophils fluorescence. The phagocytic activity is reported as:  

Phagocytic index = (% phagocytosis/100) * mean fluorescent intensity.  

 

Statistics 

Neutrophil function assay data were analyzed for outliers within each assay data set using the 

Grubbs’ Test (QuickCalcs, GraphPad Software). Where necessary, outliers were removed 

following identification. Using JMP Pro 9.0, data were then analyzed for significance using 

One-Way ANOVA followed by Dunnett’s procedure for post hoc comparison of means 

between single control and multiple experimental groups and a P-value equal to or less than 

0.05 was considered statistically significant. 

 

4.3. Results 

NSC23766 caused a significant decrease in respiratory burst after 25 and 40 minutes 

stimulation intervals starting at 250 $M (Figure 4.1a, 25 minute data not shown). NET 

release was also significantly decreased by NSC23766 starting at 250 $M (Figure 4.1b). 

Phagocytosis of opsonized, heat-killed A. hydrophila was significantly decreased from 25 

$M up to the higher concentration tested (Figure 4.1c). 

 

4.4. Discussion 

 

In this study, we investigated the function of Rac2 in adult zebrafish neutrophils. For the first 

time, a role for Rac2 in key neutrophil functions of respiratory burst, NET-release, and 

phagocytosis is shown in the zebrafish. Previously published and presented data support the 
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choice of the zebrafish as a model system to study innate immune function (Martin and 

Renshaw, 2009; Meeker and Trede, 2008; Tobin et al., 2010). 

 

While knockout work in mice and study of genetically deficient human cells has shown some 

functional redundancy, there are distinct phenotypes associated with loss of function of Rac1 

and Rac2 in neutrophils. Loss of Rac2 activity results in those phenotypes noted in the 

introduction, including neutropenia and functional deficits in chemotaxis, degranulation, and 

respiratory burst. Global loss of Rac1 activity is embryonic lethal. Conditional knockout of 

Rac1 in mouse cells of myelocytic lineage results in decreased release of neutrophils and 

their precursors into the blood from the bone marrow in response to an experimental 

peritonitis model as well as chemotaxis deficits similar to those seen in Rac2-deficient 

neutrophils. As further evidence of isoform specificity in function, reconstitution with one 

isotype does not completely compensate for deletion of the other (Glogauer et al., 2003). In 

Rac2 null cells, some in vitro compensatory up-regulation of expression of Rac1 has been 

observed (Gu et al., 2002). Under normal conditions, human and mouse neutrophils have 

been shown to contain both RAC1 and RAC2, though in different proportions 

(approximately 1:10 to 1:20 and 1:1, respectively, RAC1 to RAC2) (Heyworth et al., 1994; 

Li et al., 2002). This difference in relative proportion of Rac isoforms within neutrophils is 

significant because of the functional overlap between the molecules. A Rac2-deficient human 

neutrophil may have more difficulty compensating for that deficiency than a Rac2-deficient 

mouse neutrophil because of the much lower concentration of Rac1 in the human neutrophil 

as compared to the mouse. 

 

Utilizing well-established in vitro techniques, we examined the role of Rac2 in adult 

zebrafish neutrophil function. While the small-molecule inhibitor NSC23766 inhibits all 

three isoforms of Rac GTPase, our previous data suggest that Rac2 is the predominant 

isoform of Rac in the adult zebrafish neutrophil and MPO-positive precursors. A dose-

dependent inhibitory response was seen in respiratory burst, NET, and phagocytosis assays.  

All three of these neutrophil functions have been previously described in zebrafish (Brothers 

et al., 2011; Colucci-Guyon et al., 2011). 
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Between teleost fish and mammals, the functional domains of NADPH-oxidase are highly 

homologous and its components show a similar expression pattern (Kawahara et al., 2007; 

Rieger and Barreda, 2011). The importance of NADPH-oxidase activity is illustrated by the 

recurrent bacterial and fungal infections seen in patients with a defect in any of the NADPH-

oxidase subunits (Geha et al., 2007). The ROS generated by the NADPH-oxidase likely play 

both a direct and indirect antimicrobial role in the neutrophil (Nauseef, 2007; Nordenfelt and 

Tapper, 2011). 

 

NETs, in fish and in mammals, are comprised of a network of chromatin strands that are 

closely associated with histones and granular components (Brinkmann et al., 2004; Fuchs et 

al., 2007; Pali! et al., 2007b). These structures are released via what is believed to be a 

distinct cell death pathway, called NETosis (Fuchs et al., 2007; Remijsen et al., 2011). While 

it is widely thought that pathogens become entangled in these NETs and are subsequently 

killed by the potent antimicrobial substances from the neutrophil, a recent report has called 

this microbicide into question (Menegazzi et al., 2012). 

 

The phagocytosis of pathogenic invaders allows neutrophils to swiftly and effectively kill 

phagocytosed microbes in a well-contained, controlled environment (the phagosome) while 

limiting collateral damage that the potent substances contained within their granules could 

cause to the surrounding host tissue. 

 

Rac2, previously known as the p21rac, serves as a subunit of the NADPH-oxidase (Abo et al., 

1994; Diebold and Bokoch, 2005). In order to bind to the other NADPH-oxidase subunits 

and mediate assembly of the full complex, Rac2 must be in its GTP-bound active state. 

NSC23766 binds to Rac2, preventing GEF-mediated nucleotide exchange, essentially 

locking Rac2 in its GDP-bound inactive state. Because of the role of Rac2 in NADPH-

oxidase assembly and electron transport, decreased respiratory burst function in NSC23766-

inhibited neutrophils was expected; we observed a dose-dependent decrease in the degree of 

respiratory burst (Figure 4.1a). This decrease in respiratory burst following Rac2 inhibition in 
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zebrafish neutrophils mirrors the respiratory burst deficits previously seen in human and 

mouse Rac2-deficient neutrophils (Ambruso et al., 2000; Roberts et al., 1999). 

 

NET-release has been reported to be primarily ROS-dependent in investigated species (e.g. 

mouse, human, chickens [heterophil extracellular traps])(Chuammitri et al., 2009; Ermert et 

al., 2009; Fuchs et al., 2007). A recent report even suggests that singlet oxygen is both 

necessary and sufficient for NET release in both normal and CGD-affected human 

neutrophils (Nishinaka et al., 2011). Thus, we expected to see a decrease in NET release 

upon inhibition of Rac2 with NSC23766 because it inhibited respiratory burst. During the 

planning phases of these experiments, Lim et al. published their report that Rac2 is required 

for RONS-dependent NET release in mice (Lim et al., 2011). Inhibition of Rac2 in adult 

zebrafish neutrophils results in a dose-dependent decrease in NET release (Figure 4.1b). 

Interestingly, this inhibition of NET release was seen only when NSC23766 was applied to 

the cells simultaneously with PMA stimulation, despite the fact that 30 minute pre-incubation 

with NSC23766 followed by PMA stimulation was sufficient to inhibit respiratory burst 

function to a statistically significant degree. It is possible that a biologically significant 

concentration of ROS remains in zebrafish neutrophils after NSC23766 pre-incubation, 

allowing for subsequent NET release. There has been a report of Leishmania donovoni 

inducing NETs in an ROS-independent manner in human neutrophils (Gabriel et al., 2010), 

and it is also possible that zebrafish may have an ROS-independent NET release pathway. 

 

Rac2-deficient neutrophils in humans and mice have previously been shown to have defects 

in phagocytosis (Koh et al., 2005; Williams et al., 2000). This is likely at least partially due 

to the role of Rac2 in actin skeletal rearrangement. NSC23766-inhibition of Rac2 in zebrafish 

neutrophils also resulted in a dose-dependent decrease in phagocytosis of opsonized, heat-

killed bacteria. In fact, at all tested concentrations (25 $M through 500 $M), there was 

statistically significant inhibition of phagocytosis by the neutrophils. These results may 

represent an increased sensitivity to NSC23766-inhibition of Rac2 in phagocytic function as 

compared to the other functions assessed; or they may represent increased sensitivity of the 
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phagocytic assay itself, being flow-based as compared to the other assays which are 

fluorometric plate-reader-based. 

 

Rac2 was shown to be important in respiratory burst, NET release, and phagocytosis in 

zebrafish neutrophils, as it has been shown to be in mammalian neutrophils. Rac2 presents a 

viable target for further dissecting neutrophil roles and functions, as it is present during the 

life-stages often used for in vivo study, including the window during which morpholino 

oligonucleotide gene knock-down is effective. The case for the zebrafish as an innate 

immunological model is strengthened by these findings. 
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Figure 4.1.  Inhibition with NSC23766 
results in dose-dependent decrease of 
neutrophil functions. Values are shown 
as unit-less stimulation index with bars 
representing standard error. Dosages of 
NSC23766 are in $M. (A) Respiratory 
burst (n=15) after 40 minutes 
stimulation with PMA; (B) NETs (n=8); 
(C) Phagocytosis (n=7). All were 
stimulated with either PMA or bacteria, 
depending on the assay; numbers on the 
x-axis represent the concentration of 
NSC23766 in $M. 
(* denotes significant difference from 
control at P < 0.05)
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CHAPTER 5. Rac2 knockdown is associated with increased mortality during infectious 

challenge in zebrafish (Danio rerio) embryos 
 
Rachel M. Tellab and Du#an Pali!a 
 

Abstract 

Rac2 plays a role in regulation of gene expression and actin cytoskeletal rearrangement in 

cells of hematopoietic origin. Loss of Rac2 activity results in neutrophil function deficits that 

may increase severity of bacterial infection. In this study, rac2 gene translation in zebrafish 

embryos was knocked down using morpholino oligonucleotides and embryos were 

challenged with Aeromonas hydrophila or Edwardsiella ictaluri. Knockdown of rac2 

significantly increased mortality of embryos challenged with A. hydrophila. 

 

5.1. Introduction 

Rac2 is a member of the Rac subfamily of Rho small GTPases. These molecules participate 

in the regulation of actin cytoskeletal rearrangement and gene expression in many different 

cell types (Hall, 1998; Van Aelst and D'Souza-Schorey, 1997). There are three Rac isoforms 

that exhibit considerable sequence similarity and some functional redundancy but have 

different expression patterns. While Rac1 is ubiquitously expressed and Rac3 is expressed 

widely, Rac2 is expressed only in cells of hematopoietic origin (Didsbury et al., 1989; 

Haataja et al., 1997; Williams et al., 2000).  

 

Neutrophils are leukocytes, a first line of recruited cellular defense in the immune system. 

They respond quickly and in large numbers to infection and loss of tissue integrity (Deng et 

al., 2012; Rebuck and Crowley, 1955). Impairment of neutrophil function has been known to 

cause serious breach of host defenses against infectious disease and subsequent death in 

human beings and other animals (Nathan, 2006; Newburger, 2006). 
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The importance of Rac2 in many neutrophil effector functions has been well-established in 

humans and mice. Rac2 deficiency is a rare primary immunodeficiency in humans which 

leads to severe, recurrent infections and poor wound healing (Roberts et al., 1999). Rac2-

deficient neutrophils exhibit defects in chemotaxis, phagocytosis, degranulation, NADPH 

oxidase assembly and activation, and NET release (Abdel-Latif et al., 2004; Ambruso et al., 

2000; Lim et al., 2011). 

 

The zebrafish, Danio rerio, is a vertebrate model system with high genetic tractability and 

great potential for observation of in vivo experiments, all of which have driven its popularity 

in the field of immunology (Meeker and Trede, 2008). Previous work from our laboratory 

and others has established the presence of Rac2 in embryonic and adult zebrafish neutrophils 

and shown that it has similar roles in those cells as in their mouse and human counterparts 

(Deng et al., 2011). The one previous infection challenge in Rac2-deficient zebrafish 

embryos was conveyed via intra-otic injection, a popular location due to the paucity of 

phagocytes normally found in the inner ear of the developing zebrafish embryo and also due 

to the ability to easily control infectious dose across embryos and experiments (Deng et al., 

2011). However, recent evidence suggests that the inner ear, hind-brain ventricle, and other 

fluid-filled spaces may need to be rethought as experimental infection routes/locations in the 

zebrafish, especially when researchers want to assess neutrophil dynamics and contribution 

to the immune response, because neutrophils were observed to predominantly phagocytose 

surface-bound microbes (Colucci-Guyon et al., 2011). Our interest was primarily neutrophil 

contribution to immunity and we wanted to pursue a more natural infection model for our 

two fish pathogens (Aeromonas hydrophila and Edwardsiella ictaluri), so we utilized 

immersion infection in this study. 

 

Applying a morpholino oligonucleotide gene knock-down approach, we show that rac2 

morphant embryos are significantly more likely to die than control embryos when exposed to 

A. hydrophila via immersion. This suggests a role for rac2 in disease resistance and survival 

in the zebrafish embryo. 
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5.2. Materials and Methods 

Animals 

Wild-type zebrafish adults and embryos were bred, raised, and maintained according to 

standard procedures (Westerfield, 2000) and their use was approved by Iowa State University 

Animal Care and Use Committee. Fish were housed in Aquatic Habitats® recirculation 

systems (Apopka, FL, USA) with 10% daily water exchange using dechlorinated tap water at 

25˚C.  

 

Morpholino oligonucleotide (MO) knockdown 

A previously described rac2 translation-inhibiting MO was used: Deng rac2 MO                 

5'- CCACCACACACTTTATTGCTTGCAT -3' (Deng et al., 2011). A splice-site-directed 

MO was designed to inhibit the pre-mRNA splicing between exons 2 and 3 of rac2: e3 block 

rac2 MO 5'- CTCACCTATTTCTTTGGCCAATGCG - 3'. Microinjections into one to four-

cell stage zebrafish embryos consisted of 3 nL (6 ng) of standard control, Deng rac2, or e3 

block rac2 MO. All MO were ordered from GeneTools, LLC, Philomath, OR, USA. 

 

Static immersion infection assay 

After initial embryo collection, all media used had been autoclaved. Aeromonas hydrophila 

and Edwardsiella ictaluri were grown on blood agar and in Trypticase Soy Broth then 

suspended to target concentrations (1.54-2.2 x 10^8 cfu/ mL for A. hydrophila, 1.25-2.25 x 

10^6 cfu/ mL for E. ictaluri) in autoclaved egg water (60 mg of sea salt [Instant Ocean, 

Kingman, AZ, USA] per mL of deionized water) (Westerfield, 2000). Bacterial 

concentrations were determined initially via optical density and then confirmed via plate 

count. At 2 days post fertilization (dpf), previously MO-injected embryos, and uninjected 

sibling controls, from at least three separately parented clutches per experiment were divided 

into sterile 12-well cell-culture plates with as little medium transfer as possible. Infection 

wells received bacterial suspension while uninfected control wells received autoclaved egg 

water. After five hours of static immersion exposure, embryos were removed from their 

wells, rinsed in 60 mL of autoclaved egg water, and placed in fresh wells with 4 mL of 

autoclaved egg water per well; mortalities were recorded and scored, dead embryos and 
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debris removed, and 50-80% water change performed on each well every 24 hours after 

bacterial exposure through 7 dpf, at which point any surviving embryos were euthanized. 

 

Statistical analysis 

The survival results were analyzed for significance of differences by the Pearson chi-squared 

test and the Cochran–Mantel–Haenszel test, where appropriate. A value of p < 0.05 was 

considered significant. 

 

5.3. Results 

Overall, embryos were more likely to die if they were in a MO-injected group (p < 0.0001 for 

both A. hydrophila  and E. ictaluri), regardless of their infection status. Also, the mortality of 

Deng rac2 and e3 block rac2 morphants did not significantly differ from one another in 

either set of experiments (A. hydrophila or E. ictaluri). 

 

In the A. hydrophila experiments, embryos in infected groups were significantly more likely 

to die, across all injection treatment groups and uninjected controls (p < 0.0001; Figure 5.1). 

While injection of the control MO had no significant effect on mortality, both translation-

inhibition and splice-blocking rac2 morphants exhibited significantly higher mortality in 

response to infection with A. hydrophila (p < 0.0001 compared to control MO injected 

embryos; Figure 5.1). 

 

For E. ictaluri, however there was not a significant difference in mortality between infected 

and uninfected control groups for any of the treatment groups or positive injection controls. 

Only the uninjected control group exhibited a significant difference in mortality between 

infected and uninfected groups (p = 0.0294; data not shown). Control MO injection was 

associated with significantly higher mortality than negative controls only in uninfected 

embryos (p = 0.0054; data not shown). Both rac2 specific morphants did exhibit mortalities 

significantly higher than positive and negative controls (p-values range from < 0.0001 to 

0.0179; data not shown); however, in light of the fact that there was no significant effect of 

E. ictaluri infection, one should be careful not to read too much into these results. 
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Additionally, within each injection-treatment group, no significant differences in mortality 

were observed between infected and uninfected embryos. 

 

5.4. Discussion 

In this study, we investigated the effects of rac2 knockdown on mortality of the embryonic 

zebrafish following exposure to two fish pathogens. Both types of rac2 morphants exhibited 

increased mortality following exposure to A. hydrophila, suggesting that rac2 knockdown 

does affect the ability of these fish to prevent and/or survive infection. This deficit is likely 

contributed to by decreased neutrophil function in the rac2 morphants. 

 

Previous work from our lab has confirmed the presence of rac2 transcript by 12 hours post 

fertilization (hpf) and its steady increase in expression over the first 72 hpf in the developing 

zebrafish embryo. We have also established in adult zebrafish that Rac2 plays an important 

role in the key neutrophil functions of respiratory burst, NET release, and phagocytosis 

(manuscript in review). Neutrophils have been observed to appear for the first time at 26 hpf, 

at this time they are already migratory and capable of chemotaxis and phagocytosis (Ellett 

and Lieschke, 2010). These timelines, as well as in vivo work done by Deng and colleagues, 

suggest that rac2 is a viable target for morpholino oligonucleotide gene knockdown in order 

to affect neutrophil function in zebrafish embryos during their first 48 hpf (Nasevicius and 

Ekker, 2000). 

 

Rac2 deficiency leads to a number of phenotypic changes in multiple hematopoietic cell 

types aside from neutrophils, these include B and T cells (Arana et al., 2008; Faroudi et al., 

2010), mast cells (Gu et al., 2002), dendritic cells (DCs) (Savina et al., 2009), 

monocyte/macrophages (Yamauchi et al., 2004) and alterations in stem cell localization and 

retention (Cancelas et al., 2005; Deng et al., 2011). Lymphocyte involvement in this 

experiment is believed to be a non-issue, due to the onset of adaptive immune function in the 

zebrafish, approximately 4 weeks post-fertilization (Ellett and Lieschke, 2010). 
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Mast cells have now been described and are being further characterized in zebrafish (Da'as et 

al., 2011), but their function in the zebrafish is poorly understood at this time. Mast cells in 

other animals have been implicated in the early immune response, degranulating in reaction 

to bacterial invaders and thus helping to recruit neutrophils to the site of infection (Chan et 

al., 2012). Rac2 deficiency has been shown to play a role in the regulation of mast cell 

protease gene expression, it seems possible that our results (and the phenotypes seen in other 

Rac2-deficient animals) are partially mediated by differential gene expression, and thus 

function, of mast cells (Gu et al., 2002). 

 

There is morphological and functional evidence to support the existence of an antigen-

presenting DC population in zebrafish (Lugo-Villarino et al., 2010). Considering the delay in 

the onset of adaptive immune function in the embryo, and that identified roles of Rac2 in 

DCs are all in antigen processing and presentation pathways, DC-mediated effects on 

mortality were not a concern in these experiments. In murine macrophages, Rac1 is the 

primary isotype (ratio to Rac2 ~4:1), but Rac2-deficient murine macrophages do exhibit 

some selective defects in phagocytosis of opsonized particles and superoxide production 

(Yamauchi et al., 2004). Thus, macrophage effects cannot be ruled out in our experiments. 

 

Aeromonas hydrophila, a Gram negative bacillus, is a largely opportunistic pathogen, which 

is ubiquitous in aquatic ecosystems (Monfort and Baleux, 1990). It has been reported to 

infect humans, fish, and other poikilotherms (Janda and Abbott, 1998). Transmission is 

thought to be via the gastrointestinal tract or parenteral introduction. The zoonotic potential 

of A. hydrophila is of note due to its tendency toward being multiply antibiotic resistant 

(Janda and Abbott, 2010). A. hydrophila primarily causes a fatal hemorrhagic septicemia in 

temperate and warm-water fish, including zebrafish (Rodríguez et al., 2008). Infection with 

A. hydrophila induces reactive oxygen species (ROS), both intracellularly in neutrophils and 

macrophages and in the extracellular environment (Rodríguez et al., 2008). However, the 

bacteria are at least partially ROS-resistant due to the presence of two bacterial superoxide 

dismutases (Leclère et al., 2004). The pathogenesis of A. hydrophila infection is still not 
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well-understood, though a number of virulence factors have been identified (such as 

capsules, lipopolysaccharide, and flagella)(Yeh and Klesius, 2011). 

 

Edwardsiella ictaluri, also a Gram negative bacillus, is an obligate pathogen of channel 

catfish (Ictaluris punctatus), though it has been recovered in naturally occurring infection 

from a number of other fish species, including Danio devario, and has been used in 

experimental infections of several others, including zebrafish (Petrie-Hanson et al., 2007). 

Transmission is via the gastrointestinal tract through water or cannibalism (Hawke, 1979). E. 

ictaluri causes a rapid-onset septicemia in fish (Hawke, 1979). Pathogenesis of the disease in 

adult zebrafish is comparable to that in channel catfish (Petrie-Hanson et al., 2007).  In 

contrast to A. hydrophila, E. ictaluri is an intracellular pathogen that can replicate in both 

neutrophils and macrophages (Booth et al., 2006). Booth and others have found that 

macrophages do kill some E. ictaluri, though, and that this is improved with opsonization. 

While neutrophils also phagocytose E. ictaluri, reports conflict on whether or not they kill it, 

even with opsonization (Ainsworth and Chen, 1990; Waterstrat et al., 1991). Zebrafish 

neutrophils and monocyte/macrophages have been observed to phagocytose E. ictaluri (Hohn 

et al., 2009).  

 

Ainsworth and Chen found that, when incubated in normal catfish serum and with catfish 

peripheral blood neutrophils, only 32.4% of the E. ictaluri, but 64.8% of the A. hydrophila 

were killed or inhibited (Ainsworth and Chen, 1990). This suggests that neutrophils play a 

larger role in protection from A. hydrophila than they do for E. ictaluri, which may partially 

explain why rac2 knockdown, and the resulting presumed neutrophil functional deficits, 

significantly increased mortality following A. hydrophila exposure, but not E. ictaluri. Our 

results provide evidence that rac2 is important in the immune response to A. hydrophila. The 

expression of Rac GTPases in zebrafish monocyte/macrophages is currently undescribed. If it 

mirrors that in mice, which cannot safely be assumed considering the difference between 

Rac2 to Rac1 ratios in mouse and zebrafish neutrophils (1:1 versus 1:0, at the transcript 

level), then the observed murine macrophage phagocytosis defects would be of possible 

importance due to their decreased ROS production and phagocytosis of opsonized particles 
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(Yamauchi et al., 2004). This last because breeding pairs are kept under conventional 

conditions and, thus it is possible that maternal antibody to A. hydrophila or another closely 

related Aeromonas spp. was deposited into the eggs (Roeselers et al., 2011; Wang et al., 

2012).  

 

While maternal antibody could, conceivably, be an explanation for why we saw no 

significant difference in mortality between infected and uninfected fish in our E. ictaluri 

experiments, especially in light of the observations of Booth and colleagues that catfish 

macrophages are better at phagocytosing and killing opsonized E. ictaluri, we think maternal 

antibody is unlikely to be the explanation for three reasons: 1) while Edwardsiellae 

(including ictaluri) have been found to be natural inhabitants of the zebrafish gut in wild-

caught fish, Roeselers and colleagues did not find them in any of the domesticated zebrafish 

that they sampled, suggesting that, for the most part, we do a good job of excluding 

Edwardsiellae from our laboratory zebrafish culture; 2) there has been no evidence of disease 

in our laboratory’s zebrafish stock, despite the fact that our population’s average age is 

relatively old (greater than 16 months), they are currently kept at moderately high density on 

a recirculating system, and we use treated municipal water in our system; 3) there is likely a 

simpler explanation for our results. A small number of bacterial concentration titration 

experiments were performed with uninjected wild-type zebrafish embryos before the MO-

injection trials began. In these trials, concentrations of 10^6 cfu/ mL, the lowest examined in 

this setup, were shown to result in ~40% survival, which was near our 50% goal 

(unpublished data). Thus, 10^6 cfu/ mL was chosen for the MO-injection experiments. With 

larger numbers of embryos and more replication, this concentration proved too low. Small-

scale testing of 10^8 cfu/ mL proved too lethal, but there was a very significant difference 

between infected and uninfected embryos (p < 0.0001, unpublished data). It may be that 10^7 

cfu/ mL would have been optimal. This mismatch could certainly be read as a problem with 

the infection method.  

 

Static immersion is not a preferred infection method by many laboratories due to the inability 

to standardize infectious dose between fish, the increased protective measures needed for 



www.manaraa.com

69 

!

staff and stock when working with larger volumes of bacterial suspension for longer periods 

of time, and the increased variability in animal response and endpoint seen with this method 

(van Soest et al., 2011). Using a static immersion model of Edwardsiella tarda infection in 

25 hpf zebrafish, van Soest and colleagues observed mortality rates 4 days later that ranged 

from 25-75% with the same infectious dose of bacteria. However, static immersion is a more 

natural infection model for fish pathogens (Harriff et al., 2007; Milligan-Myhre et al., 2011; 

Pressley et al., 2005). So, when looking to investigate how a fish responds to a fish pathogen, 

it would make sense to perform at least some of the experiments using this infection method. 

Because zebrafish exhibit much more genetic diversity than other common model organisms, 

some variability in exposure and susceptibility to disease is expected (Guryev et al., 2006). 

 

Higher mortality in MO-injected embryos was projected due to increased manipulation and 

handling of these embryos. The lack of significant difference in mortality between either 

rac2 specific group, in addition to the significant difference in mortality between all rac2 

specific MO- and control MO-injected groups helps to validate the specificity of our rac2 

splice-blocking MO.  

 

Rac2 was shown to be important in protection of zebrafish from mortality following 

exposure to Aeromonas hydrophila, but a similar effect was not seen following exposure to 

Edwardsiella ictaluri at the tested concentration. Further testing of mortality utilizing a 

different E. ictaluri concentration is warranted. Even more exciting would be carrying the 

work forward into real-time in vivo microscopic studies to observe neutrophil and 

macrophage dynamics and interactions with the pathogens in rac2 morphants. 
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Figure 5.1. Embryo mortality of A. hydrophila-exposed control MO-injected and rac2 

morphants. Expressed as relative percent survival (normalized to uninfected, uninjected 

control values at each time point). * indicates statistically significant mortality between 

infected e3 Block rac2 morphants and positive controls, p < 0.0001; ** indicates statistically 

significant mortality between infected Deng rac2 morphants and positive controls, p < 

0.0001. Results are from three separate experiments involving 725 embryos. 
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CHAPTER 6. General Conclusions 

 

6.1 Conclusions 

The work in this dissertation has contributed information about zebrafish immune function 

and established that Rac2 function in zebrafish neutrophils is similar to that in humans and is 

important in the immune response to some pathogens. 

 

The presence of Rac2 protein in adult zebrafish neutrophils was described. Rac2 is found in 

the cytoplasm of adult zebrafish neutrophils, as in humans.  

 

rac2 is the only isoform present in adult zebrafish neutrophils. The relative ratio of rac1 and 

rac2 transcript in adult neutrophils from mature blood and mixed-stage kidney populations 

was assessed. rac2 was found in all samples. rac1 was absent in all samples, aside from two 

which showed evidence of macrophage contamination (the presence of mpeg1 transcript).  

 

rac2 is expressed by 12 hpf in zebrafish embryos. 

 

Inhibition of Rac2 in adult zebrafish neutrophils results in decreased respiratory burst, NET 

release, and phagocytosis functions, using the small molecule inhibitor of Rac, NSC23766. 

 

Gene knockdown of rac2 in zebrafish embryos results in increased mortality following 

exposure to Aeromonas hydrophila at 10^8 cfu/ mL but not Edwardsiella tarda at 10^6 cfu/ 

mL. 

 

6.2 Recommendations for future work 

In order to close out the in vitro functional work, investigation into the degranulation of 

zebrafish neutrophils under Rac2 inhibitory conditions is warranted, as degranulation is a key 

function of neutrophils. In order to do so, either a neutrophil degranulation assay that reliably 

performs using unpurified kidney marrow suspensions or a method of purifying live 

zebrafish neutrophils while preserving their function would be necessary.  
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Personal interest prompts me to suggest that retitrating Edwardsiella ictaluri infectious dose 

and repeating the gene knockdown study of embryo survival would be worthwhile. 

 

The really exciting work that can stem from this dissertation, however, will come by 

expanding into in vivo assessment of neutrophil function under normal and Rac2-

deficient/inhibited conditions. Utilizing the rac2 morpholino oligonucleotides described in 

Chapter 5, a gene knockdown approach could be used to investigate the repercussions of 

Rac2-deficiency on neutrophils (or any other cell for which there is a transgenic reporter line) 

in zebrafish. Neutrophil number, migration habits, and interactions with other host cells 

could be assessed. Additionally, many and varied pathogens might be labeled with a 

fluorophore of a different color than that in the transgenic reporter line of zebrafish being 

used. This opens up the possibility for direct observation of host pathogen interactions. This 

approach is already being used by a number of labs. But it can be used specifically in this 

case to probe the role of Rac2 in neutrophil functions in vivo. Previously described assays to 

measure migration, chemotaxis, phagocytosis, and number at site of infection/injury could be 

used. Additionally, if the right reagents become available, there may one day be the ability to 

feasibly measure degranulation, respiratory burst, and even NETosis in vivo. In particular, I 

would be interested to use the system to investigate the role of neutrophils in infection with 

intracellular pathogens, neutrophil/macrophage interaction dynamics and how those affect 

the rest of the immune response. 
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